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Using the Brownian dynamics simulation technique, we study the rotational dynamics of a semi- 
flexible broken rod. We employ a suitable bead model with stiff springs between beads and strong 
forces opposing to bending, except at the joint where flexibility is variable. We consider mostly 
broken rods with equal arms. From the simulated Brownian trajectories we obtain the correlation 
function for the second order Legendre polynomial of the reorientational angle of the end-to-end 
vector and of the arm vector. These correlation functions are closely related to fluorescence ani- 
sotropy decay and electric birefringence decay, respectively. In the first case, the relaxation time 
for a completely flexible rod agrees with the Harvey-Wegener theory, and in the second, the 
longest relaxation time agrees well with that obtained from the rigid-body treatment over the whole 
range of flexibility. Furthermore, we discuss the relative importance of flexibility in both types of 
decay. Finally, we present results for a case with unequal arms, confirming the validity of the 
Harvey-Wegener theory and the rigid-body treatment. 
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INTRODUCTION 

Segmentally flexible macromolecules [1] have a few 
domains or subunits of comparable size joined by more 
or less rigid connectors. One of the simplest and most 
important cases is that of some biopolymers, of which 
the myosin rod [2] is a typical example, having two 
rodlike subunits joined by a semiflexible joint. The proper 
model for such cases is the broken rod, which was first 
studied over 20 years ago [3]. Some works have focused 
on the calculation of overall hydrodynamic properties 
such as the sedimentation coefficient and the intrinsic 
viscosity, which can be conveniently obtained averaging 
conformationally values calculated for rigidly bent rods 
[4,5] in terms of the so-called rigid-body treatment [3,6,7]. 
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We have recently presented a comprehensive study of 
this procedure [8]. 

A different approach to the dynamics of segmen- 
tally flexible macromolecules consists of extending the 
theory for rigid macromolecules [4,9,10] as to include 
additional degrees of freedom corresponding to the in- 
ternal (essentially bending) motions [2,11-16]. In this 
theory, first proposed by Harvey and Wegener and fur- 
ther developed by other workers, the inversion of a gen- 
eralized friction matrix gives a generalized diffusion matrix 
from which diffusion coefficients corresponding to var- 
ious reorientational modes can be obtained. The theory 
is restricted to the case of total flexibility at the hinges. 

As both approaches suffer some deficiencies in the 
description of the rotational dynamics of the whole mol- 
ecule or that of its parts, we recently undertook [17] the 
simulation of the Brownian dynamics [18,19] of a sim- 
plistic model with three beads, the elastic trumbbell [20- 
22]. Comparing results from both formalisms with the 
simulated ones, we were able to find out that the rigid- 
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body treatment is quite accurate in the prediction of the 
reorientational rate for the end-to-end vector over the 
whole range of flexibility, while the reorientation of the 
individual subunits had a different rate that agreed well 
for the flexible case with the Harvey-Wegener (HW) 
theory [2,11] including hydrodynamic interaction [12,14]. 

We now present a Brownian dynamics simulation 
of a broken rod with a semiflexible swivel-like joint. We 
have used several values for the flexibility parameter of 
the joint, obtaining, from simulated trajectories, corre- 
lation functions related to the decay of different time- 
dependent electrooptical properties. Thus, we can find 
rotational relaxation times observed in fluorescence an- 
isotropy decay [2,11], ~'i (i = 1,2) and the one corre- 
sponding to the decay of the electric birefringence 
[21,23,24], %. In all the cases the data obtained with 
the Brownian simulation technique have been compared 
with the rigid treatment results [8] (%) or with the results 
of Wegener [11] ('ri). 

METHODS 

The broken rod is modeled, as shown in Fig. 1, 
using N = 1 + nl + n2 touching beads with diameter 
b. nl and n2 are, respectively, the beads in each arm, 
and an additional bead represents the hinge. Actually, 
adjacent beads are held together by a stiff spring with 
equilibrium length b and a potential quadratic in the dis- 
placement with respect to b, with a spring constant such 
that the fluctuation in bond length is only 10%. Previous 
calculations for related models [17,25] have shown that 
these choices results in a good representation of a rigid 
bond. Thus, the length of the molecule can be taken as 
L = Nb. Due to the slowness of Brownian dynamics 

\ 

Fig. 1. Geometry of the semiflexible broken rod with N = 11 (n 1 = 
n2 = 5) in an instantaneous conformation determined by the central 
angle, a~. The unitary vectors describing the orientations of the bonds 
(ui), arms (u~,), and end-to-end vector (u,~) are shown. 

simulation with hydrodynamic interaction (computer time 
proportional to N3), we have taken just N = 11. From 
previous works [4,8,26,27] it is expected that, if prop- 
erties are properly scaled to L, the results will be quite 
insensitive to the choice of N since it usually influences 
the dynamics in the form of InN. In most of the calcu- 
lation we considered arms of equal length since in that 
way the difference between the broken rod and the straight 
one is greatest. In some cases, we considered different 
arm lengths to observe their different mobility. 

We denote as bi the bond vector going from the 
center of bead i to that of bead i + 1. eq is the angle 
subtended by vectors bi-i  and b; (determined by beads 
i = i - 1, i, and i + 1). We assume a bending potential 
normalized to thermal energy kT, which is also quadratic 
in the displacement with respect to an equilibrium value 
supposed to be zero (beads aligned) and with a stiffness 
parameter Q. Thus, 

Vb,~ = Q~? (1) 

If beads i - 1, i, and i + 1 are in the same arm (in- 
cluding the case in which either bead i - 1 or bead i 
+ 1 is the hinge), we take a supposedly very high value 
for the parameter, Q~ = 50 (under Results section we 
just say Q ~ 00), so that the beads will be practically 
collinear. The fluctuation (Acca) 1/~ is only 0.16 radian. 
In other words, the arms are like very stiff worm-like 
chains with a ratio of persistence to total length equal to 
0.965, which corresponds to a practically rod-like be- 
havior. 

On the other hand, if bead i is at the joint, we take 
varying values for Q, between 0 and 50 (practically ~), 
so that this parameter determines the flexibility of the 
hinged rod and will be essential in the calculations and 
the Discussion. 

In the Appendix we give more details about the 
mechanical properties of the model and present explicit 
expressions for the forces. 

The numerical work was performed in reduced form, 
as described elsewhere [251. The unit in which we express 
translational diffusion is kBT/67r'qo(b/2), where kBT, is 
the Boltzman exponential, ,% the solvent viscosity, and 
b the diameter of the subunits. Rotational diffusion is in 
units of kBT/6w'qo(b/2) 3 and the reciprocal of the latter 
is the unit of time. 

The computer requirements of Brownian dynamics 
simulation with hydrodynamic interaction made it nec- 
essary to optimize the simulation conditions with regard 
to both procedure and working parameters. In the first 
aspect, the use of a second-order algorithm that we have 
recently studied [28], instead of the first-order, Ermak- 
McCammon [18] procedure, was crucial to speed up the 
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simulation. With regard to working conditions the time 
step was At = 0.0005 in the dimensionless form. The 
Brownian trajectory was arbitrarily started from a straight 
conformation of the rod (which is indeed the confor- 
mation of minimum energy). Anyhow, the results are 
independent of this choice, since the memory of the in- 
itial conformation is lost after a moderate number of 
steps. 

The total number of steps was 5.105 , so the length 
of the trajectory was 250. The conformation of the model 
was recorded every five steps, so that a set of 100,000 
data was available for the correlation analysis. We have 
verified that this is the optimum value, because a shorter 
trajectory is not sufficient to show the internal and over- 
all motions, and on the other hand, with larger trajec- 
tories important accumulative errors that effect the 
precision of the data have been observed. In all the cases 
the trajectory was divided into five subtrajectories (five 
subsets of 20,000 conformations) with a length of 50, 
and the correlation functions were calculated for each of 
them. For a given value of time, the results of the cor- 
relation function for the various subtrajectories were 
combined, calculating their mean and standard devia- 
tion. The former is taken as the final value of the cor- 
relation function, and the latter is used to estimate the 
statistical error of the procedure which is indicated by 
means of the error bars in the following figures. Hydro- 
dynamic interaction was included rigorously in all our 
simulations, using Yamakawa-Rotne-Prager tensors [9]. 

RESULTS AND DISCUSSION 

We first analyzed the time correlation function (P2) 
-= (P2(cos0x)), where 0x is the angle subtended by two 
orientations of the end-to-end vector, separated by time 
t. The decay of this function is related to the decay of 
the electric birefringence. Some results are presented in 
Fig. 2. For all the values of Q the decay is linear in the 
semilogarithmic plot, so that it can be represented by 

(P2)x =- exp( - t/%) (2) 

where % is the relaxation time for the end-to-end vector. 
The results are listed in Table I. In the rigid-body treat- 
ment for rotational relaxation, 1/% is obtained as a con- 
formational average over rigid-bent-rod values as described 
in our previous paper [8]. It is evident from the results 
in Table I that such treatment gives results that are in 
excellent agreement with the simulation. We remark that, 
as noted in Ref. 8, the relaxation time increases by a 
factor "r,~(~)/%(0) --- 2 on going from the completely 
flexible to the rigid (straight) rod. 
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Fig. 2. Plot of the decay of the (P2)x function, corresponding to the 
reorientation of the end-to-end vector, for a rod with equal arms for 
the two extreme flexibility cases, Q = 0 and Q = ~. 

Table I. Relaxation Times in Reduced Units for the End-to-End 
Vector of a Rod of Equal Arms (nl = nz = 5) 

i i 

1/'q 

Q RB a DB b 

0. 0.181 0.190 
0.2 0,153 0.141 
0.3 0.142 0,132 
0.5 0.127 0.121 
1. 0.109 0,108 
2. 0.098 0.099 
| 0.087 0.089 

~Rigid-body treatment. 
bBrownian dynamics simulation. 

We next analyzed the time correlation function (P2)b 
-- (P2(cosG)), where Ob is the angle subtended by/.wo 
orientations, separated by time t, of the arm vector, which 
is a unitary vector in the direction that goes from the 
joint to the end of the arm. This function corresponds 
now to the rotation of one arm more or less indepen- 
dently of the other (depending on the flexibility of the 
joint) and it is closely related to the decay of fluores- 
cence anisotropy; the decays of (P2)b and anisotropy are 
indeed coincident if either the absorption or the emission 
moments are along the arm. Otherwise the anisotropy 
decay would have a component associated to torsional 
rotation of the subunits along their long exes. This com- 
ponent would relax typically much faster than those con- 
sidered here. As our simulation algorithm cannot deal 
with such torsional motions, we overlook that possible 
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component. In fact, we just consider the decay of (P2), 
which do not depend on the specific orientations of the 
emission and absorption moments. 

In our preliminary study of the segmentally flexible 
trumbbell we have shown that the decay of (Pa)b is dif- 
ferent from that of (P2)x. Indeed, this is evident from the 
results shown in Fig. 3. Now, a good description of the 
decay requires a double-exponential fitting function: 

(P2 )b  = Aexp(-t/'q) + (1-A)exp(-t/'r2) (3) 

mostly for intermediate Q. The results for 'rl, "r;, and 
the amplitude A are listed in Table II. 

The second relaxation time "/2 characterizes the in- 
itial depolarization noticed in the period 0 -< t _< 0.4 
and has an error larger than that of the first one. This 
fact, along with the lack of a trend in the data for various 
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Fi~.  3. The same as in Fig. 1 for the function (P2)b corresponding to 

the reorientation of the arms. 

Table l I .  Relaxation Times in Reduced Units for the Arm Vector of 

a Rod of Equal Arms  (nl = nz = 5) 

BD c 

Q 1/'rl RB a 1/'rl H W  b A 1/'q 1/% 

0. - -  0.338 0.99 0.35 - -  

0.2 - -  - -  0.96 0.32 3.0 
0.5 - -  - -  0.96 0.26 4.2 

1. - -  - -  0.95 0.24 3.6 

2. - -  - -  0.90 0.186 2.9 
0o 0.087 - -  0.93 0.089 4.4 

Average 3.6 

"Rigid-body treatment. 
bHarvey-Wegener  theory including IH. 
cBrownian dynamics simulation. 

Q's, suggests that 'r z may be independent of the flexi- 
bility of the hinge. For intermediate Q's, 'r 2 is only twice 
shorter than "q. For very flexible broken rods our results 
suggest 'r2/'rl - 1/5, while for very stiff ones "rz will be 
one or more orders of magnitude shorter. Anyhow, this 
effect may be difficult to verify experimentally, and on 
the other hand, there is no available theory against which 
our simulation data could be compared. 

Therefore we concentrate our analysis of (P2)b in 
the long time region (say t> 0.4), which is determined 
by the longest relaxation time, "rl. We see in Table II 
how the result for 'r I from the Harvey-WegenerEZ.111 
treatment for the completely flexible case including hy- 
drodynamic interactiont151 is in excellent agreement with 
that from the simulation. Thus, we verify for the hinged 
rod our conclusion previously obtained with the trumb- 
bell model, about the correctness of the Harvey-Wege- 
ner treatment of segmentally flexible macromolecules. 

We note that the longest relaxation time for the arm 
relaxation, ~1, is more sensitive to flexibility than that 
for the end-to-end, "r a. Indeed, we obtain "q(~)/'rl(0 ) ---- 
4. Thus, properties of the type of fluorescence aniso- 
tropy decay are more sensitive to flexibility than other 
properties such as birefringence decay. Furthermore, there 
is a qualitative aspect that may be even more relevant 
from the point of view of data interpretion: while the 
electric birefringence decay is expected to be a single 
exponential for rigid, semiflexible, and completed flex- 
ible rods, in the case of the decay of fluorescence ani- 
sotropy or similar properties, a double-exponential 
behavior could be found for broken rods of intermediate 
flexibility. 

We finally present results for a single case in which 
the joint is not at the middle of the rod, and the arms 
are unequal. (Pz)x was again monoexponential, with re- 
laxation times listed in Table III. (P2)b was again fitted 
to a double-exponential function, but the behavior was 
practically monoexponential in most cases (A = 0.92 or 

Table I I I .  Relaxation Times in Reduced Units for a Rod with 

Unequal Arms nl  = 4, nz = 8 

i/ 'r  a 1/'q, short arm 1/-rl, long arm 

RB a BD b BD HW ~ BD HW 

0. 0.094 0.096 0.52 0.54 0.133 0.136 
0.5 0.075 0.078 0.51 - -  0.120 - -  

0.057 0.057 0.06 - -  0.054 - -  

aRigid-body treatment. 
bBrownian dynamics simulation. 
cHarvey-Wegener  theory including IH. 
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0.97 when Q ~ ~ and A ~ 1 in other cases). Although 
the break is not at the middle, the ratio 'ra(~)/'ra(0) --= 2 
still holds. The performance of the rigid-body treatment 
is again very good. For the relaxation time of the arms, 
the Harvey-Wegener theory is in good agreement with 
simulation, as in the previous case. 

The variation of the relaxation times "r 1 with Q shows 
clearly a tendency that could already be perceived for nl 
= n2. We see that for a typically intermediate value Q 
= 0.5 (which is about that corresponding to myosin rod 
[8]), for which % is roughly halfway between %(~) and 
"ra(0), the value of 'rl is much closer to "r(0) than to 'r(~). 
In other words, a much smaller amount of flexibility is 
required to make an appreciable decrease in the relaxa- 
tion time (with respect to that of the straight rod) in the 
case of 'rl (anisotropy decay) than for % (birefringence 
decay). A related conclusion is that the HW values, that 
which are strictly valid only for Q = 0, give reasonable 
estimates of the arm relaxation of quite stiff rods. Thus, 
the Harvey-Wegener treatment can be useful in prelim- 
inary interpretation of data for semiflexible broken rods, 
and this is probably the case for other segmentally flex- 
ible macromolecules. 

APPENDIX 

Stretching Forces 

The bond between two neighbor beads is regarded 
as a strong spring with an harmonic potential. For the 
bond i we have 

kT 
Vs, i = 282 ( bi - bo) 2, i 

= 1 . . . . .  N -  1 (A1) 

where b o is the equilibrium length, bi the instantaneous 
distance between subunit i and subunit i + 1, and 8 is 
the spring constant. The stretching force acting on sub- 
unit i, Fs.i, can be obtained from the derivatives of Eq. 
(A1) with respect to its position,.vector, ri. Thus, 

Fs,  1 ---- M 1 (A2.a) 

Fs,i = M i  - M i  1, i = 2 , . . . ,  N -  1 (A2.b) 

Fs,N ----- - -  M N  (A2.c) 

where 

1 ~ b i  
M~,i = - k T  ~ n i (A3) 

and ni = bi/bi " bi is the unitary bond vector. In Eq. 
(A3) we have taken bo = 1. 

Bending Forces 

With regard to the angles o~ between bonds, the 
bending potential is considered quadratic in the displace- 
ment with respect to the equilibrium value, ao, 

1 kT i = 1 ,  N - 2  (A4) VB,i ~ -2  (0s i --  Ol0) 2 V--~, �9 �9 o ,  

where 7 is the angular stiffness parameter. From this 
equation we obtain Eq. (1) considering Q = Vz'y z, taking 
uo = 0, and normalizing to thermal energy kT. 

This potential is a function of the position of the 
subunits i, i + 1, and i + 2. The bending force for 
each subunit is obtained from the derivatives of terms 
given by Eq. (A4): 

FB, 1 = A1,1 (A5.a) 

FB, 2 = A1, 2 + A2,1 - A1,1 (AS.b) 

FB,I = Ai-1,2 - AI-2,2 + Ai,1 - Ai-1,1, (AS.c) 

i= 1 , . . . , N - 2  

FB,N_ 1 = AN_2 ,  2 --  AN_3 ,  2 - -  AN_Z,  1 (AS.d) 

FB, N = - -AN_2 ,  2 ( A S . e )  

where 

[~t ~ ] " (--ni+l + cosoqni) (A'D.a) Ai,1 = kT ~ s'~n~bi 

and 

�9 ( - u i  + cosc~ui+l) (A6.b) 

In Eq. (A6) we have taken ao = 0. 

Total Forces 

The sum of the stretching contributions and that 
from bending give the total force at each bead, 

F, = F~, + Fs, i (A7) 
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